top of page

 Publications

2024

 

Construction of whole cell bacterial biosensors as an alternative environmental monitoring technology to detect naphthenic acids in oil sands process-affected water.

Bookout T, Shideler S, Cooper E, Goff K, Headley JV, Gieg LM, Lewenza S.

bioRxiv. 2024:2024-04.

2023

 

Draft genome sequence of Pseudomonas sp. ER28, a cyclohexane pentanoic acid degrader isolated from oil sands process-affected water from Alberta, Canada.

Goff KL, Gauthier J, Gieg LM, Kukavica-Ibrulj I, Ramos-Padrón E, Lewenza S, Levesque RC.

Microbiology Resource Announcements. 2023, 16;12(11):e00651-23.

 

The mystery of piezophiles: Understudied microorganisms from the deep, dark subsurface.

Scheffer G, Gieg LM.

Microorganisms. 2023, 1:1629.

Biofilms and their role in corrosion in marine environments.

Brown DC, Okpala GN, Gieg LM, Turner RJ.

In: Understanding Microbial Biofilms 2023 (pp. 173-185). Academic Press.

2022

 

Diagnosing microbiologically influenced corrosion at a crude oil pipeline facility leak site–A multiple lines of evidence approach.

Sharma M, Liu H, Tsesmetzis N, Handy J, Place T, Gieg LM.

International Biodeterioration & Biodegradation. 2022, 172:105438.

 

Biodegradation of Polymers Used in Oil and Gas Operations: Towards Enzyme Biotechnology Development and Field Application.
Berdugo-Clavijo C, Scheffer G, Sen A, Gieg LM.

Polymers 2022, 14, 1871.

Assessing Microbial Corrosion Risk on Offshore Crude Oil Production Topsides under Conditions of Nitrate and Nitrite Treatment for Souring.
Nicoletti D, Sharma M, Gieg LM. 

Microorganisms 2022, 10, 932.
 

Preparation and identification of carboxymethyl cellulose-degrading enzyme candidates for oilfield applications.

Scheffer G, Rachel NM, Ng KKS, Sen A, Gieg LM.

Journal of Biotechnology, 347: 28-25

Impact of Preservation Method, Storage Temperature, and Processing Time on Microbiological Community Shift in Solid Samples Collected from Crude Oil Transmission Pipelines.

Sharma M, Taylor N, Gieg L, Place T, Shen Y, Nicoletti D, Sargent J.

In: AMPP CORROSION 2022 Mar 6 (p. D031S027R001). AMPP.

2021

Failure Analysis for Internal Corrosion of Crude Oil Transporting Pipelines.

Sharma M, Place T, Tsesmetzis N, Gieg LM.

In: Failure Analysis of Microbiologically Influenced Corrosion.

Editors:  Eckert RB, Skovhus TL

1st Edition, CRC Press, Chapter 8, Pages 19

https://doi.org/10.1201/9780429355479

Microbiological Sampling and Preservation for Evaluating Microbial Communities in Oilfield and Other Biological Samples Using Molecular Microbiological Methods
Rachel NM, Gieg LM.
In: Failure Analysis of Microbiologically Influenced Corrosion.

Editors:  Eckert RB, Skovhus TL

1st Edition, CRC Press, Chapter 22, Pages 15

https://doi.org/10.1201/9780429355479

Standard Operating Procedures for Sampling Onshore and Offshore Assets for Genomic, Microbial, and Chemical Analyses and/or Experiments.

Gieg LM, Sharma M, Haile T, Hawboldt KA, Bottaro C, Modir A, Duncan D, Place T, Eckert RB, Skovhus TL, Sargent T, Jack TR, Fragoso N.

In: Failure Analysis of Microbiologically Influenced Corrosion.

Editors:  Eckert RB, Skovhus TL

1st Edition, CRC Press, Chapter 26, Pages 20

https://doi.org/10.1201/9780429355479

Molecular Methods for Assessing Microbial Corrosion and Souring Potential in Oilfield Operations.
Okpala GN, Eresia-Eke R, Gieg LM. 

In: Microbial Bioinformatics in the Oil and Gas Industry.

Editors: Wunch K, Stipaničev M, Frenzel M
1st Edition, CRC Press, Chapter 9, Pages 37
eBook ISBN9781003023395

Quantitative PCR Approaches for Predicting Anaerobic Hydrocarbon Biodegradation.
Toth CRA, Kharey G, Gieg LM. 

In: Microbial Bioinformatics in the Oil and Gas Industry.

Editors: Wunch K, Stipaničev M, Frenzel M
1st Edition, CRC Press, Chapter 12, Pages 22
eBook ISBN9781003023395

Denitrification Biokinetics: Towards Optimization for Industrial Applications.

Suri N, Zhang Y, Gieg LM, Ryan MC.

Frontiers in Microbiology, 12: 610389.

https://www.frontiersin.org/articles/10.3389/fmicb.2021.610389/full

 

Wettability Alteration of Oil-Wet Carbonate by Viscosity-Augmented Guar Galactomannan for Enhanced Oil Recovery.

Rellegadla S, Jain S, Sanwai JS, Lavania M, Lal B, Gieg L, Rajasekar A, Bera A, Agrawal A.

Applied Polymer Materials, 3: 1983-1994.

https://pubs.acs.org/doi/pdf/10.1021/acsapm.1c00059

 

Differential Protein Expression During Growth on Model and Commercial Mixtures of Naphthenic Acids in Pseudomonas fluorescens Pf-5.

McKew B, Johnson R, Clothier L, Skeels K, Ross M, Metodiev M, Frenzel M, Gieg L, Martin J, Hough M, Whitby C.

MicrobiologyOpen 2021:10:e1196.

https://onlinelibrary.wiley.com/doi/full/10.1002/mbo3.1196#:~:text=https%3A//doi.org/10.1002/mbo3.1196

The Effect of an Adsorbent Matrix on Recovery of Microorganisms from Hydrocarbon-Contaminated Groundwater.

Taylor, NM, Toth CRA, Collins V, Mussone P, Gieg LM.  

Microorganisms  9, 90. 

https://doi.org/microorganisms 9010090  

 

Enzyme Biotechnology Development for Treating Polymers in Hydraulic Fracturing Operations.  

Scheffer G, Berdugo-Clavijo C, Sen A, Gieg LM.

Microbial Biotechnology, online, doi/10.1111/1751-7915.13727   

Time to Agree: The Efforts to Standardize Molecular Microbiological Methods (MMM) for Detection of Microorganisms in Natural and Engineered Systems. 
De Paula RM, Gieg LM; Duncan K; Tsesmetzis N; Eckert R; Skovhus TK
CORROSION 2021, Virtual, April 19 2021.
NACE-2021-16986

 

2020

Complete and Validated Genomes from a Metagenome.

Giguere DJ, Bahcheli AT, Joris BR, Paulssen JM, Gieg LM, Flatley MW, Gloor GB.

bioRxiv, https://doi.org/10.1101/2020.04.08.032540

Combined Use of Diagnostic Fumarate Addition Metabolites and Genes Provides Evidence for Anaerobic Hydrocarbon Biodegradation in Contaminated Groundwater.

Kharey G, Scheffer, G, Gieg, LM.

Microorganisms, 8, 1532.

Preserving Microbial Community Integrity in Oilfield Produced Water.
Rachel NM, Gieg LM.

Frontiers in Microbiology 11: 2536.

Signature Metabolite Analysis to Determine In Situ Anaerobic Hydrocarbon Biodegradation.

Gieg LM, Toth CRA.

In: Boll M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-50391-2_19

2019

Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site.

Sharma M, Nandy A, Taylor N, Venkatesan SV, Kollath VO, Karan K, Thangadurai V, Tsesmetzis N, Gieg LM.
Journal of Hazardous Materials, 121845.

Biodegradation of 1-adamantanecarboxylic acid by algal-bacterial microbial communities derived from oil sands tailings ponds.

Paulssen JM, Gieg LM.
Algal Research 41, 101528

High temperature utilization of PAM and HPAM by microbial communities enriched from oilfield produced water and activated sludge.

Berdugo-Clavijo C, Sen A, Seyyedi M, Quintero H, O’Neil B, Gieg LM.

AMB Express 20199: 46 https://doi.org/10.1186/s13568-019-0766-9

 

Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge.

Nandy A, Sharma M, Venkatesan SV, Taylor N, Gieg LM, Thangadurai V.
Energies 12(6): 1034 https://doi.org/10.3390/en12061034 

 

Insights into the mechanisms and microorganisms catalyzing methanogenic hydrocarbon biodegradation in petroleum reservoirs.

Toth CRA, Gieg LM.
In: Oilfield Microbiology, Eds. Skovhus TL, Whitby C.

CRC Press, Boca Raton, FL.

 

Characterization of microbiologically influenced corrosion potential in nitrate injected produced waters.

Sharma M, Handy J, An D, Voordouw G, Gieg LM.

Paper presented at NACE International, Nashville, TN, March 24-28.

 

Synergistic effect of biocide and corrosion inhibitor in mitigation of microbiologically influenced corrosion in wet parked crude oil pipelines.

Bagaria H, Sharma M, Gutierrez R, Oliver A, Sargent J, Place T, Tafel G, Gieg L.

Paper 03-1419, NACE Northern Area Western Conference, Calgary, AB, February 5-7.

 

Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment

B. Shin, M. Kim, K. Zengler, K. Chin, W.A. Overholt, L.M. Gieg, K.T. Konstantinidis, J.E. Kostka.

Scientific Reports 9: 1239

2018

Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5.

M. Sharma, H. Liu, S. Chen, F.Cheng, G. Voordouw & L. Gieg.

Scientific Reports 8:16620.

Stable isotope and metagenomics profiling of a methanogenic naphthalene-degrading enrichment culture.

Toth, C. R. A.; Berdugo-Clavijo, C.; O'Farrell, C. M., Jones, G. M.; Sheremet, A.; Dunfield, P. F.; Gieg, L. M.

Microorganisms, online July 10, 6(3), doi: 10.3390/microorganisms6030065

Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs.

Kim D. D.; O'Farrell C.; Toth C.R A; Montoya, O.; Gieg, L.M.; Kwon, T.H.; Yoon, S.

Microb. Biotechnol. 11: 788-796. doi: 10.1111/1751-7915.13281.

Time course-dependent methanogenic crude oil biodegradation: dynamics of fumarate addition metabolites, biodegradative genes, and microbial community composition.

Toth, C.R.A.; Gieg. L. M. . 2018.

Front. Microbiol. Vol8, Art. 2610.

2017

Methanogenic paraffin biodegradation: alkylsuccinate synthase gene quantification and dicarboxylic acid production.

Oberding, L.K., L.M. Gieg. 

Appl. Environ. Microbiol. online Oct 13, 2017. doi: 10.1128/AEM.01773-17.

Benzene and naphthalene-degrading microbial communities in an oil sands tailings pond.

Rochman, F.F., A. Sheremet, I. Tamas, A. Saidi-Mehrabad, J.-J. Kim, X. Dong, C.W. Sensen, L. M. Gieg, P. F. Dunfield. 

Frontiers Microbiol., Vol. 8, Art. 1845

The microbiology of oil sands tailings: past, present, future.

Foght, J.; T. Siddique; L. M. Gieg. 

FEMS Microbiol. Ecol. 93, doi: 10.1093/femsec/ x034 (online May 1).

Signature Metabolite Analysis to Determine in situ Anaerobic Hydrocarbon Biodegradation.

Gieg, L. M.; C.R.A. Toth. 2017.

In: Handbook of Hydrocarbon and Lipid Microbiology, 2nd Edition, Ed. K. N. Timmis, Vol.

Ed. M. Boll, Springer-Verlag, Berlin Heidelberg, in press.

Anaerobic Biodegradation of Hydrocarbons - Metagenomics and Metabolomics.

Gieg, L. M.; C. R. A. Toth. 2017.

In: Handbook of Hydrocarbon and Lipid Microbiology, 2nd Edition. Ed. K. N. Timmis, Vol.

Ed. R. Steffan, Springer-Verlag, Berlin Heidelberg, in press.

Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

Johnston, C. U., L.N. Clothier, D. M. Quesnel, L. M. Gieg, G. Chua, P. M. Hermann, W. C. Wildering. 2017.

Chemosphere 168: 1578-1588

2016

Protocols for Investigating the Microbiology of Oil Sands Deposits.

Ridley, C. R.; G. Voordouw; L. M. Gieg.

In: Hydrocarbon and Lipid Microbiology Protocols: Field Studies.
Eds. T. J. McGenity, K. N. Timmis, B. Nogales, Springer-Verlag, Berlin Heidelberg, p. 111-131.

Protocols for Handling, Storing and Cultivating Oil Sands (Tar Sands) Tailings Ponds Materials for Microbial and Molecular Biological Study.

Foght, J. M.; T. Siddique; L. M. Gieg. 

In: Hydrocarbon and Lipid Microbiology Protocols: Field Studies.

Eds. T. J. McGenity, K. N. Timmis, B. Nogales, Springer-Verlag, Berlin Heidelberg, p.175-197.

Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions.

Gomes, M. B.; E. E. Gonzales-Limache; S. T. P. Sousa; B. M. Dellagnezze; A. Sartoratto; L. C. F. Silva; L. M. Gieg; E. Valoni; R.S. Souza; A. P. R. Torres; M. P. Sousa; S. O. De Paula; C. C. Silva; V. M. Oliveira.

Int. Biodeterior. Biodeg. online Sept. 10, doi.org/10.1016/j.ibiod.2016.08.014.

Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities.

Wilson, S. L.; C. Li, E. Ramos-Padrón; C. Nesbø; J. Soh; C. W. Sensen; G. Voordouw, J. Foght, L. M. Gieg. 
J. Biotechnol. 235:187-196.

Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments.

Fowler, S. J.; C.R.A. Toth; L. M. Gieg.

Frontiers Microbiol. Vol. 5, Art. 562, doi: 10.3389/fmicb.2016.00562.

Metagenomic analyses reveal that energy transfer gene abundances can predict the syntrophic potential of environmental microbial communities.

Oberding, L.; L. M. Gieg.  

Microorganisms 4(1), 5, doi:10.3390/microorganisms4010005

 

2015

Anaerobic biodegradation of surrogate naphthenic acids.

Clothier, L. N.; L. M. Gieg.

Water Research 90: 156-166.

Biostimulation of oil sands process-affected water with phosphate yields removal of sulphur-containing organics and detoxification.

Quesnel, D. M.; T. B. Oldenburg; S. R. Larter; L. M. Gieg; G. Chua.

Environ. Sci. Technol. 49: 13012-13020.

Comparative analysis of metagenomes from 3 methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples.

Tan, B. F.; S. J. Fowler; N. Abu Laban; X. Dong; C. W. Sensen; J. Foght; L. M. Gieg.

ISME J. 9: 2028-45.

Laboratory Protocols for Investigating Microbial Souring and Potential Treatments in Crude Oil Reservoirs.

Xue, Y.; G. Voordouw; L. M. Gieg. 

In: Hydrocarbon and Lipid Microbiology Protocols.

Eds. T. J. McGenity, K. N. Timmis, B. Nogales, Springer-Verlag, Berlin Heidelberg. pp. 183-210.

 

2014

Identification of toluene degraders in a methanogenic enrichment culture.

Fowler, S. J.; M.-L.Gutierrez-Zamora; M. Manefield; L. M. Gieg.

FEMS Microbiol. Ecol. Online, June 9, doi: 10.1111/1574-6941.12364

Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters.

Berdugo-Clavijo, C.; L. M. Gieg. 2014.

Frontiers Microbiol. online May 5, Vol. 5: Article 197. doi: 10.3389/fmicb.2014.00197.

Syntrophic biodegradation of hydrocarbon contaminants.

Gieg, L. M.; S. J. Fowler; C. Berdugo-Clavijo. 2014.

Curr. Opin. Biotechnol. 27: 21-29.

Stable Isotope Probing for Environmental Microbiology Studies (Ch. 14).

Fowler, S. J.; L. M. Gieg. 2014.

In: Molecular Methods and Applications in Microbiology, Caister Academic Press, Norfolk, UK,

Eds. T. Lund Skovhus; S. M. Caffrey; C. R. J. Hubert, pp. 171-179.

Molecular Biology Methods Applied to Microbial Methane Production in Oil Reservoirs, Coal Beds, and Shales (Ch. 7).

Gieg, L. M.; K. Budwill. 2014.

In: Molecular Methods and Applications in Microbiology Caister Academic Press, Norfolk, UK,

Eds. T. Lund Skovhus; S. M. Caffrey; C. R. J. Hubert, pp. 77- 90.

 

2013

Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis involved in an oil sands tailings pond.

An, D.; D. Brown; I. Chatterjee; X. Dong; E. Ramós-Padron; S. Wilson; S. Bordenave; S. M. Caffrey; L. M. Gieg, C. W. Sensen; G. Voordouw. 

Genome 56: 612-618.

Metagenomics of hydrocarbon resource environments indicate aerobic taxa and genes to be unexpectedly common.

An, D.; S. M. Caffrey; J. Soh; A. Agrawal; D. Brown; K. Budwill; X. Dong; P. F. Dunfield; J. Foght; L. M. Gieg; S. Hallam; N. W. Hanson; Z. He; T. R. Jack; J. Klassen; K. M. Konwar; E. Kuatsjah; C. Li; S. Larter; V. Leopatra; C. L. Nesbø; T. B. Oldenburg; A. P. Page; E. Ramos-Padron; R. Rochman; A. Saidi-Mehrabad; C. W. Sensen; P. Sipahimalani; Y. C. Song; S. L. Wilson; G. Wolbring; G. Wong; G. Voordouw. 

Environ. Sci. Technol. 47: 10708-10717.

In situ detection of anaerobic alkane metabolites in subsurface environments.

Agrawal, A.; L. M. Gieg.

Frontiers Microbiol. Chem. online June 4, Vol. 4, Article 140. doi:10.3389/fmicb.2013.00140.

The effect of oil sands process-affected water and naphthenic acids on the germination and development of Arabidopsis.

Leishman, C.; E. E. Widdup; D. M. Quesnel; G. Chua; L. M. Gieg; M. A. Samuel; D. G. Muench.

Chemosphere 93: 380-387.

Reactive reservoir simulation of biogenic shallow shale gas systems enabled by experimentally determined methane generation rates.

Cokar, M.; B. Ford; L. M. Gieg; M. S. Kallos; I. D. Gates.

Energy & Fuels 27: 2413–2421.

2012

Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons.

Berdugo-Clavijo, C.; X. Dong; J. Soh; C. W. Sensen; L. M. Gieg.

FEMS Microbiol. Ecol., 81: 124-133.

Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection.

Agrawal, A.; H. S. Park; S. Nathoo; L. M. Gieg; T. R. Jack; K. Miner; R. Ertmoed; A. Benko; G. Voordouw. Environ. Sci. Technol. 46: 1285-1292.

Methanogenic toluene metabolism: community structure and intermediates.

Fowler, S. J.; X. Dong; C.W. Sensen; J. M. Suflita; L. M. Gieg.

Environ. Microbiol. 14: 754-764.

Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

Golby, S.; H. Ceri; L. M. Gieg; I. Chatterjee; L. L. R. Marques; R. J. Turner.

FEMS Microbiol. Ecol. 79: 240-250.

 

2011

Biological souring and mitigation in oil reservoirs.

Gieg, L. M.; T. R. Jack; J. M. Foght.

Appl. Microbiol. Biotechnol. 92: 263-82.

Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta.

Quesnel, D. M.; I. M. Bhaskar; L. M. Gieg; G. Chua.

Chemosphere 84: 504-511.

Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond.

Ramos-Padrón, E.; S. Bordenave; S. Lin; I. Mani Bhaskar; X. Dong; C.W. Sensen; J. Fournier; G. Voordouw; L. M. Gieg.

Envir. Sci. Techn. 45: 439-446.

2010

Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields.

Gieg, L. M.; I. A. Davidova; K. E. Duncan; J. M. Suflita.

Environ. Microbiol. 12: 3074-3086.

Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures.

Callaghan, A. V., I. A. Davidova, K. Savage-Ashlock; V. A. Parisi; L.M. Gieg; J.M. Suflita, J.J. Kukor, B. Wawrik.

Envir. Sci. Tech. 44: 7287–7294.

Anaerobic Microbial Processes and the Prospect for Methane Production From Oil.

Gieg, L. M.

In: Applied Microbiology and Molecular Biology in Oil Field Systems

Eds. C. Whitby and T. Lund Skovhus; Springer, pp. 189-192.

Case Study: Proof of Concept That Oil Entrained in Marginal Reservoirs Can Be Bioconverted to Methane Gas as a Green Energy Recovery Strategy.

Gieg, L. M.

In: Applied Microbiology and Molecular Biology in Oil Field Systems

Eds. C. Whitby and T. Lund Skovhus; Springer, pp. 193-198.

Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.

Savage, K. N.; L. R. Krumholz; L. M. Gieg; V. A. Parisi; J.M. Suflita; J. Allen; R. P. Philp; M. S. Elshahed.

FEMS Microbiol. Ecol. 72: 485-495.

Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers.

Yagi, J. M.; J. M. Suflita; L. M. Gieg; C.M. DeRito; C.-O. Jeon; E. L. Madsen.

Appl. Environ. Microbiol. 76: 3124-3134.

 

2009

Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities.

Duncan, K. E.; L. M. Gieg; V. A. Parisi; R. S. Tanner; J. M. Suflita; S. G. Tringe; J. Bristow.

Environ. Sci. Technol. 43: 7977-7984.

Polarizability and spin density correlate with the relative anaerobic biodegradability of alkylaromatic hydrocarbons.

Beasley, K. K.; L. M. Gieg; J. M. Suflita; M. A. Nanny.

Environ. Sci. Technol. 43: 4995-5000.

Assessing in situ rates of anaerobic hydrocarbon bioremediation.

Gieg, L. M.; R. E. Alumbaugh; J. A. Field; J. Jones; J. D. Istok; J. M. Suflita.

Microbial Biotechnol. 2: 222-233.

Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site.

Parisi, V. A.; G. R. Brubaker; M. J. Zenker; R. C. Prince; L. M. Gieg; M. LB. da Silva; P. J. J. Alvarez; J. M. Suflita.

Microbial Biotechnol. 2: 202-212.

 

1996-2008

Bioenergy production via microbial conversion of residual oil to natural gas.

Gieg, L. M.; K. E. Duncan; J. M. Suflita.

2008. Appl. Environ. Microbiol. 74: 3022-3029.

Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment.

Davidova, I. A.; L. M. Gieg; K. E. Duncan; J. M. Suflita.

2007. ISME J. 1: 436-442.

Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium.

Callaghan, A. V.; L. M. Gieg; K. G. Kropp; J. M. Suflita; L. Y. Young.

2006. Appl. Environ. Microbiol. 72: 4274-4282.

Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment.

Davidova, I. A.; L. M. Gieg; M. Nanny; K. G. Kropp; J. M. Suflita.

2005. Appl. Environ. Microbiol. 71: 8174-8182.

Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in Petroleum-Laden Environments.

Gieg, L. M.; J. M. Suflita.

2005. In: Petroleum Microbiology, Eds. B. Ollivier; M. Magot, ASM Press, Washington, DC, pp. 337-356.

Determination of alkylbenzene metabolites in groundwater by solid-phase extraction and liquid chromatography-tandem mass spectrometry.

Alumbaugh, R. E.; L. M. Gieg; J. A. Field.

2004. J. Chromatog. A 1042: 89-97.

An Overview of Anaerobic Metabolism

McInerney, M. J.; L. M. Gieg. 2004.

2004. In: Strict and Facultative Anaerobes: Medical and Environmental Aspects,

Eds. M. M. Nakano; P. Zuber, Horizon Bioscience, Norwich, UK, pp. 27-65.

Anaerobic Hydrocarbon Biodegradation and the Prospects for Microbial Enhanced Energy Production.

Suflita, J. M.; I. A. Davidova; L. M. Gieg; M. Nanny; R. C. Prince.

2004. In: Petroleum Biotechnology: Developments and Perspectives (Studies of Surface Science and Catalysis, Vol 151), Eds. R. Vasquez-Duhalt; R. Quintero-Ramirez, Elsevier Science Press, pp. 283-306.

Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer.

Rios-Hernandez, L. A.; L. M. Gieg; J. M. Suflita.

2003. Appl. Environ. Microbiol. 69: 434-443.

Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers.

Gieg, L. M.; J. M. Suflita.

2002. Environ. Sci. Technol. 36: 3775-3742.

Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments.

Elshahed, M. E.; L. M. Gieg; M. J. McInerney; J. M. Suflita.

2001. Environ. Sci. Technol. 35: 682-689.

Evidence for intrinsic bioremediation in a gas condensate-contaminated aquifer.

Gieg, L. M.; R. V. Kolhatkar; M. J. McInerney; R. S. Tanner; S. H. Harris; K. L. Sublette; J. M. Suflita.

1999. Environ. Sci. Technol. 33: 2550-2560.

Microbial mineralization of diisopropanolamine.

Gieg, L. M.; D. L. Coy; P. M. Fedorak.

1999. Can. J. Microbiol. 45: 377-388.

Sulfolane biodegradation potential in aquifer sediments at sour natural gas plant sites.

Greene, E. A.; L. M. Gieg; D. L. Coy; P. M. Fedorak.

1998. Water Res. 32: 3680.

Diisopropanolamine biodegradation potential at sour gas plant sites.

Gieg, L. M.; E. A. Greene; D. L. Coy; P. M. Fedorak.

1998. Ground Water Monitor. Remed. Summer 18: 158-173.

Carbazole degradation by Pseudomonas sp. LD2: Metabolic characteristics and the identification of some metabolites.

Gieg, L. M.; A. Otter; P. M. Fedorak.

1996. Environ. Sci. Technol. 30: 575-585.

bottom of page